
AFRL-AFOSR-UK-TR-2014-0022 
 
 
 
 
 
 

 
 

Scattering Physics of Multistatic Radar Sea Clutter 
 
 
 
 

Hugh Griffiths 
 Keith Ward 

  
 UNIVERSITY COLLEGE LONDON 

 GOWER STREET 
 LONDON WC1E 6BT UNITED KINGDOM 

 
 
 

EOARD Grant 11-3062 
 
 

Report Date: May 2014 
 

Final Report from 1 October 2011 to 30 September 2013 
 

 
 
 

 
 
 

Air Force Research Laboratory 
Air Force Office of Scientific Research 

European Office of Aerospace Research and Development 
Unit 4515, APO AE 09421-4515 

Distribution Statement A:  Approved for public release distribution is unlimited. 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1.  REPORT DATE (DD-MM-YYYY) 

30 May 2014 
2.  REPORT TYPE

Final Report 
3.  DATES COVERED (From – To) 

1 October 2011 – 30 September 2013 
4.  TITLE AND SUBTITLE 

 
Scattering Physics of Multistatic Radar Sea Clutter 

5a.  CONTRACT NUMBER 
 

FA8655-11-1-3062 
5b. GRANT NUMBER
 
Grant 11-3062 
5c.  PROGRAM ELEMENT NUMBER 
 
61102F 

6.  AUTHOR(S) 
                                       
Hugh Griffiths 
Keith Ward 

5d.  PROJECT NUMBER 

5d.  TASK NUMBER 

5e.  WORK UNIT NUMBER 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
UNIVERSITY COLLEGE LONDON 
GOWER STREET 
LONDON WC1E 6BT UNITED KINGDOM 

8.  PERFORMING ORGANIZATION
     REPORT NUMBER 
 

 
N/A 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 
EOARD 
Unit 4515  
APO AE 09421-4515 
 

10.  SPONSOR/MONITOR’S ACRONYM(S) 
 
AFRL/AFOSR/IOE (EOARD) 

11.  SPONSOR/MONITOR’S REPORT NUMBER(S)
 

AFRL-AFOSR-UK-TR-2014-0022 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
 
Distribution A:  Approved for public release; distribution is unlimited.   
 
 
13.  SUPPLEMENTARY NOTES 
 
 
 
14.  ABSTRACT 

 
This report presents work undertaken on Multistatic Radar Sea Clutter over the period October 2012 to April 2014. A number of 
topics have been addressed as follows: (1) NATO SET-185 is a research collaboration panel on sea clutter involving 9 nations. 
UCL has participated in collaborative work and meetings supported by this grant. (2) Low grazing angle sea clutter models. 
Differences between existing empirically derived models for average sea clutter backscatter have been investigated and 
compared with Propagation and EM scatter modeling. A number of potential explanations for the differences are proposed. (3) 
Multistatic radar measurement accuracy. The evaluation of measurement accuracy for a multistatic radar system is a difficult 
and complicated task. Work has been undertaken to derive a straightforward method, which is presented in this report. 
 
 
 

 
 
 
 
 
 
 
 
 
 

15.  SUBJECT TERMS 
 
EOARD, multistatic radar, high grazing angles 
 
 
16. SECURITY CLASSIFICATION OF: 17.  LIMITATION OF 

ABSTRACT 
 

SAR 

18,  NUMBER 
OF PAGES 

 
23 

19a.  NAME OF RESPONSIBLE PERSON
James H Lawton, PhD a.  REPORT 

UNCLAS 
b.  ABSTRACT 

UNCLAS 
c.  THIS PAGE 

UNCLAS 
19b.  TELEPHONE NUMBER (Include area code) 

+44 (0)1895 616187 

                                                                                                                                     Standard  Form  298  (Rev.  8/98) 
Prescribed by ANSI Std. Z39-18

 



 1 

Report on Scattering Physics of Multistatic Radar Sea clutter 
(EOARD grant FA8655-11-1-3062) 

 
Keith Ward1, UCL 

October 2012 to April 2014 
 

1.  Summary 
 
This report presents work undertaken on Multistatic Radar Sea Clutter over the period 
October 2012 to April 2014. A number of topics have been addressed as follows: 
 

1. NATO SET-185 is a research collaboration panel on sea clutter involving 9 nations. 
UCL has participated in collaborative work and meetings supported by this grant.   

  
2. Low grazing angle sea clutter models. Differences between existing empirically 

derived models for average sea clutter backscatter have been investigated and 
compared with Propagation and EM scatter modelling. A number of potential 
explanations for the differences are proposed. 

 
3. Multistatic radar measurement accuracy. The evaluation of measurement 

accuracy for a multistatic radar system is a difficult and complicated task. Work has 
been undertaken to derive a straightforward method, which is presented in this report. 

 
 

2.  Background 
 

Maritime surface search radars have traditionally operated in a monostatic mode at low 
grazing angles when searching for small maritime targets such as periscopes and small 
boats. They have generally used a non-coherent, high bandwidth approach, which can be 
implemented in a small, lightweight design with low processing demands. A major reason for 
this operational choice of low grazing angles has been that the mean radar sea clutter return 
increases significantly at higher grazing angles (above about 10-15 degrees grazing), so that 
target radar signatures are masked by the large sea clutter returns. However, the 
requirements to cover wide surveillance areas to detect highly manoeuvrable target (utilised 
in suicide attacks, smuggling and piracy), and the use of high altitude radar platforms (jet 
aircraft and high altitude UAVs) have led to a need for radar systems operating at high 
grazing angles. 
 
One potential way to overcome the sea clutter problem is to use a separate transmitter and 
receiver or receivers in a bistatic or multistatic configuration. Advances in RF technology and 
processing capacity have led to potential techniques to overcome the difficulties that have 
been traditionally associated with this approach. However, a lack of modelling in this area 
makes it difficult to quantify the levels of performance that could be expected. UCL has been 
undertaking multistatic measurements using the NetRad radar, which has produced data 
suitable for comparison with EM modelling. Most of this data is at low grazing angles due to 
the transmitter and receivers being located on the land looking out to sea. Thus it has been 
important to develop modelling that includes low grazing angles. 
 
In the previous report on this project [1] a description was given of an EM scattering model, 
which is suitable for comparison with existing data sets and other published scattering 
models. The model uses Physical Optics at high grazing angles, a two scale composite model 
at medium grazing angles, and an enhanced composite model (with multipath and breaking 
waves) at low grazing angles.  The model has been implemented for a 3D (2D and wave 
height) stochastic model for the ocean surface, at radar frequencies of 10 GHz, 16 GH and 35 

                                                      
1
 With acknowledgement to my colleagues Robert Hill and Robert Tough for their assistance 

with the work on Propagation and Measurement Accuracy respectively. 
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GHz and grazing angles from 0.1 to 90 degrees. This model can in principal be used in 
monostatic and multistatic configurations, although much of the multistatic geometry has not 
yet been implemented in the model.  

 
Comparison of the model results with monostatic data highlights that there are large 
differences between existing published monostatic models based on experimental data. The 
changes that occur when moving from monostatic to bistatic geometries turn out to be smaller 
that existing discrepancies between the different sets of published monostatic data. Therefore 
little progress can be made on the bistatic case until we understand why the monostatic data 
models are so different. This topic is addressed here in section 4. 
 
One potential benefit of multistatic radar systems is their ability to locate and track targets 
more accurately than equivalent monostatic systems. However, quantification and analysis of 
this benefit is generally very complicated and mathematical. In order to allow straightforward 
comparisons to be made, we have developed a simple method of deriving the accuracies 
using Gaussian error modelling and techniques similar to those used in the derivation and 
application of Kalman filters. The analysis might be familiar to specialists in multilateration and 
multi-sensor tracking, but not perhaps to radar engineers. Our work is described here in 
section 5. 
 
The maritime ‘high grazing angle problem’ described above is of interest to many nations. A 
NATO Set panel has therefore been set up to address this issue and we are participating in it 
as part of this project. A summary of the activities of SET-185 is therefore give below in 
section 3. 
 
 
 

3.  NATO SET Panel 185 
 
The NATO SET-185 panel has met five times: 
 
 NATO, Paris   January 2012 
 FGAN, Germany May 2012 
 Thales, UK  February 2013 
 ONERA, France September 2013 
 NRL, USA  March 2014 
 
The following individuals associated with UCL have been involved in these meetings (not all 
at all meetings): 
 

Professor Hugh Griffiths 
Professor Simon Watts (UCL visiting professor) 
Professor Keith Ward (UCL visiting professor) 
Matthew Ritchie, PhD student 

  
The panel has representatives from Canada, USA, Germany, France, UK, Turkey, Australia, 
Norway and the Netherlands. It was been set up to collaborate on different approaches to 
overcome the high grazing angle problem. The programme of research being undertaken by 
the SET Panel takes advantage of a wide range of sources of real radar data provided by the 
participants. It concentrates on analysing this data, developing empirical models for clutter & 
targets, and assessing detection schemes using the observations and the results of data 
analysis. The panel recognises the potential value of physical models of sea clutter and so a 
small team within the panel is undertaking a program of EM scattering calculations and 
modelling to underpin the data analysis and detection work. 
 
Presentations made by UCL at the five meetings covering sea clutter data analysis, statistical 
modelling, simulation, coherent detection analysis and EM scattering may be found on the 
NATO SET SharePoint.  
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4.  Low grazing angle reflectivity of sea clutter 
 

4.1 Models derived from measured data 
 

Recently a report was published by Gregers-Hansen and Mital [2] re-examining the tables of 
sea clutter RCS published by Nathanson [3]. They make the powerful point that the tabulated 
data is collated from approximately 60 sources and ‘probably represents the most complete 
data base of sea clutter reflectivity available to the radar systems engineer’. In the report 
curve fitting is used to produce a mathematical expression to approximate the functional 
dependence of the data in the tables (i.e., the variation with grazing angle, radar frequency, 
polarisation and sea state). The formula is then proposed as an empirical model (the ‘NRL 
model’) for use by radar system engineers. A similar exercise was undertaken in the UK in the 
1970’s at the Royal Radar Establishment [4] for X-band using the tables in an earlier edition 
of Nathanson. This earlier work was designated the ‘RRE model’, was widely used for radar 
specification and assessment in the UK, but was not published in the open literature until it 
was presented in a book by Ward, Tough and Watts [5]. 
 
There is also a widely used sea clutter model proposed by Horst et al [6], and known as the 
‘GIT model’, which has found wide acceptance in the radar community. In the NRL report [2] it 
is pointed out that the GIT model does not always agree with the tabulated Nathanson data. 
The discrepancies are quite large, especially at low sea states, and can, according to 
reference [2], lead to overly optimistic radar performance predictions. Although the GIT model 
is based on measured sea clutter data, records do not appear to exist listing the data sources 
and analysis techniques employed. As the work was done in the 1970’s it is probably not 
practical to reconstitute the data. I was told by workers from Georgia Tech after the work was 
done that great care was taken to exclude data from measurement environments with non-
standard atmospheric propagation, as this can distort results at low grazing angles in the 
Nathanson tables.  
 
Plots of the clutter reflectivity for the three models (NRL, RRE and GIT) are shown in Figures 
1, 2 and 3 for a radar frequency of 9 GHz, grazing angles between 0.1° and 10°, and sea 
states 1 to 5. It is clear that the NRL and RRE models are similar (as they should be, since 
they are based on some of the same data), whilst the GIT model has much smaller values of 
reflectivity at low sea states and grazing angles, as discussed above. 
 
Our work [5] has been mainly on the statistical fluctuations of sea clutter, but when we have 
analysed the average reflectivity we have usually found the GIT model to be the most 
accurate representation of the data. Unfortunately, collecting and calibrating sufficient sea 
clutter data to derive trends over grazing angles, sea states, polarisations and radar 
frequencies constitutes a very significant task, which we have never been able to undertake. 
Thus we do not have sufficient data to compare with all of Nathanson’s trends, except in a 
few special cases. One such case is shown in figures 4 and 5. Here, the clutter reflectivity 
measured by an airborne radar system, flying at an altitude of 500 feet, is plotted versus 
range. The data collection patch is set when the radar is at long range and is then 
geographically stabilised as the aircraft flies in. This means that same physical patch of sea is 
measured at different grazing angles, and thus the measurement excludes any effects of the 
spatial variation of weather or oceanography. The clutter data is corrected for the effects of 
receiver noise, which can otherwise enhance the apparent reflectivity at long range (i.e., at 
low grazing angle). In figure 4 the data is compared with the RRE sea clutter model [4] 
derived from the Nathanson tables, and in figure 5 the data is compared with the GIT clutter 
model [6]. The fluctuations in the black data line indicate the measurement accuracy obtained 
from estimations using short range and time extents of spiky sea clutter data. 
 
The data shows that, if the Nathanson tables were to be used to estimate the sea state from 
the data, then the result would be sea state 1 at long range (low grazing angle) and sea state 
6 at short range (high grazing angle). Clearly in the 10 minutes it took the aircraft to collect the 
data the sea state could not have changed to this degree. It the GIT model were to be used, 
an estimate of sea state 3 would result at all the grazing angles. Thus we must conclude that 
for this data the GIT model is much more accurate in its representation of the effect of grazing 
angle change than either the RRE or NRL models.  
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Figure 1: NRL model [2] of Sea clutter normalised RCS at 9 GHz versus grazing angle for sea states 1 to 5 
(top graph is VV lower graph is HH) 
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Figure 2: RSRE model [4] of Sea clutter normalised RCS at 9 GHz versus grazing angle for sea states 1 to 5 

(top graph is VV lower graph is HH) 

 
 

 

 
 

Figure 3: GIT model [6] of Sea clutter normalised RCS at 9 GHz versus grazing angle for sea states 1 to 5 
(top graph is VV lower graph is HH) 
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Figure 4: Sea clutter normalised RCS measured at 9.75 GHz from an aircraft at 500 feet altitude (black 

line) compared with the RRE sea clutter model [4] (green lines corresponding to sea states 1 to 6)  

 
 

 
Figure 5: Sea clutter data as plotted in figure 5 (black line) compared with the GIT sea clutter model [6] 

(green lines corresponding to sea states 1 to 6) 

 
 
As discussed above, we do not have sufficient data of the type plotted in figures 4 and 5 to 
provide a ‘measured data’ alternative to the Nathanson tables, but on the other hand we 
cannot disregards the experience over the past twenty years that has led workers round the 
world to adopt the GIT model as the best fit to their data. So we need to consider potential 
explanations for biases in the Nathanson tables. Much of the data is very old and was 
collected when A to D converters, digital recording and computer analysis equipment were 
much inferior to today, thus making it difficult to do direct analysis of large quantities of data. 
Possible sources of bias include: 
 

1. The effects of spiky sea clutter. 
2. Lack of correction for system noise. 
3. Anomalous propagation and the effect of propagation on the local grazing angle. 

 
Below we consider some of these, and scattering physics results that contribute to the choice 
of reflectivity model.

Distribution A:  Approved for public release; distribution is unlimited.



 7 

4.2  Electromagnetic scattering calculations 
 
Modelling the electromagnetic backscatter from the sea surface is a difficult undertaking due 
to the nature of the equations governing the shape of the sea surface and the reflection of the 
EM waves at the boundary between the air and sea water. There are many approximations 
and techniques that attempt to solve the problem, but at low grazing angles the best we can 
currently do is to use numerical techniques to solve the integral equations. Examples of the 
various approximations and techniques are given in [5]. Here we describe some numerical 
results that demonstrate behaviour similar to the GIT model for reflectivity versus grazing 
angle. 
 
The first step is to generate random surfaces with an ocean-like wave spectrum. An example 
is shown in figure 6. The red lines on the plot are rays illuminating the surface at a grazing 
angle of three degrees. Shadow regions are evident where the long waves obscure parts of 
the surface from the rays. 
 

 
Figure 6: An ocean-like surface (x and y axes in metres) illuminated with rays at 3 degrees grazing 

angle. 

 
One approximation for scattering is the Composite Model (described in [1]) where this ray-like 
illumination of the long waves is scattered back by small scale roughness riding on the long 
waves. The backscattered power is calculated using small perturbation theory, which is 
applied to each area on the long waves, assuming that the long wave structure can be 
approximated by a plane at a tangent to the long wave structure at that point (the so-called 
tangent plane approximation). The scattered power versus range from the surface is plotted in 
Figure 7. The shadowed regions can be seen as gaps in the backscattered power profile. 

 

 
 

Figure 7: Backscattered power versus range for the composite model applied to the surface in Figure 6. 
The black line is VV polarisation and the red line is HH  
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The composite model may be improved considerably by relaxing the ray approximation to the 
illumination of the long wave structure and applying Forward-Backward [7], sometimes called 
the ‘method of ordered multiple interactions’, to the smooth surface profile. This numerical 
technique solves the integral equations for the EM fields on the surface of the smooth 
surface, and in the process accounts for the multiple scattering and diffraction that is omitted 
from the ray calculation. The small scale roughness is then added by perturbing the smooth 
surface fields using the Lorentz Reciprocity Principle (described in [8]). The resulting 
backscattered power versus range is plotted in figure 8, where is can be seen that the 
multiple scattering and diffraction has filled in the shadow regions of figure 7. 
 

 
Figure 8: Backscattered power versus range for the FB and LRP applied to the surface in Figure 6. The 

black line is VV polarisation and the red line is HH 

 
When the power is summed over range, averaged over many surface realisations and 
recalculated at various grazing angles and rms sea surface wave heights, trends of reflectivity 
versus grazing angle and sea state emerge. These are plotted in figure 9 (on an arbitrary 
scale of reflectivity). The behaviour versus sea state and grazing angle of the back curves, 
which include multiple scattering, is very similar to the GIT model but different from the NRL 
and RRE models. This shows a strong connection between physical scattering modelling and 
the GIT empirical model. 

 
Figure 9: Average RCS for scattering from an ocean-like surface derived using the Forward-Back (FB) 
method. The black lines correspond to FB & LRP, the green lines to the ‘composite model’ and the grey 

line corresponds to the SPM or Rice result . 
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4.3  Propagation modelling and local grazing angle 
 
As discussed in section 4.1, atmospheric propagation can have a significant effect on the 
apparent sea clutter reflectivity. The modelling discussed above in 4.2 assumes that the sea 
is illuminated by the radar with a plane EM wave propagating in the direction of the line-of-
sight of the radar. In reality the atmosphere ‘bends’ the waves due to altitude variations of 
refractive index. For normal conditions (the Standard Atmosphere) this can be accounted for 
by using a 4/3 Earth radius in the calculation of grazing angle. 
 
Models for sea clutter reflectivity are designed to apply only to illumination through the 
Standard Atmosphere. Any data from conditions of anomalous propagation should be 
excluded from data sets used to test models, and should be subjected to specific propagation 
modelling. Most radar systems engineers adopt this approach (although there is some doubt 
that the Nathanson data tables excluded anomalous propagation data). However, there is a 
suggestion by some that the grazing angle for a standard atmosphere does not go below a 
non-zero limiting value, and this accounts for the higher reflectivity at low grazing angles for 
the Nathanson data tables than EM calculations. Here we explore this hypothesis and 
conclude that, if there is a limiting grazing angle, it too low (<0.05°) to account for the 
discrepancy. Also, it is most likely that the limiting grazing angle is a computational artefact, 
resulting from trying to model illumination in a shadow as an incoming plane wave (as one 
might do, for instance, with the Geometric theory of diffraction, GTD). 
 
In propagation modelling a standard simplifying assumption is of a horizontally stratified 
atmosphere. Microwave propagation in the troposphere (~0-17 km) is dominated by the 
effects of atmospheric refraction which are dependent on environmental conditions. The 
average value of the refractive index at the earth’s surface is close to 1 (a figure of n 
=1.000315 is given by the ITU as representative for mid-latitudes). A convenient quantity 
related to the refractive index is the refractivity, which is defined as 
 

 ( ) 6101−= nN  (4.1) 

 
In standard conditions, the refractive index decreases with height and can be described by an 
exponential model, [9 0. 
 

 







−=

0
0 exp

h

h
NN  (4.2) 

 
where h is the height above sea level, N0 = 315 and h0 = 7.35 km. At low altitudes this is well 
approximated by a linear model. The US standard atmosphere is defined by the alternative 
parameters N0 = 316 and h0 = 8.08 km. 
 
Refraction at the boundary of two uniform media is described by Snell’s law 
 

 2211 sinsin θθ nn =  (4.3) 

 

where θ  is the angle measured from the normal of the boundary. When the refractive index is 

a continuous function of height the rays curve and are described by 
 

 00 sinsin θθ nn =  (4.4) 

 
The above expressions assume a flat earth and must be modified to take into account the 
earth’s curvature. If the plane boundaries separating regions of constant refractive index are 
replaced by spheres as shown in Figure 10 then consideration of the triangle OAB gives 
 

 xrr sinsin 211 =θ  (4.5) 

 
Then the application of Snell’s law at the upper boundary leads to 
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 222111 sinsin θθ rnrn =  (4.6) 

 
In the case of a continuously stratified atmosphere we obtain 
 

 000 sinsin θθ rnnr =  (4.7) 

 
 

 
 

Figure 10: Sketch of spherical geometry 
 

 
The standard 4/3 earth model used in radar performance calculations is obtained by letting 

hrr += 0  where h is small compared with 0r  and considering a linear refractive index 

gradient h
dh

dn
nn += 0 . Using the fact that n0 is very close to 1 we obtain 

 θθ sin
1

1sin
0

0 




















++=

dh

dn

r
h  (4.8) 

 
showing that a linear gradient of refractive index has the same effect on refraction as the 
curvature of the earth. The effect of refraction can be accounted for by using an effective 

earth radius of 0kr  where 

 

dh

dn
r

k

01

1

+

=  (4.9) 

 
When the refractivity gradient of -39 N/km corresponding to the US standard atmosphere is 
used the traditional value of 4/3 is recovered.  The curvature can therefore be introduced 
using a modified refractive index, m 
 

 ( ) ( )
a

z
zxnzxm += ,,  (4.10) 

 
A modified refractivity, M, is defined as 
 

 ( ) 6101−= mM  (4.11) 

A 

B 

O 

2
r  

1
r  

x 2
θ  1

θ  
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In a standard atmosphere M increases approximately linearly with height. In the presence of 
evaporation ducts, which lead to anomalous propagation, M first decreases with height then 
increases. 
 
The parabolic equation for radio-wave propagation was first developed by Leontovich and 
Fock in the 1940s [10]. Parabolic equation techniques have been widely used for radiowave 
propagation modeling since the mid-1980s and are now the method of choice for radar 
propagation modeling. A detailed description of the method and its numerical implementation 
is given in [11] and [12].  
 
It is worth recalling that the wave equation is  
 

 fc
t

f 22

2

2

∇=
∂

∂
 (4.12) 

 

The associated Helmholtz equation is obtained by removing the ( )tiω−exp  to obtain 

 

 022 =+∇ ψψ k  (4.13) 

 

and the definition of the refractive index gives nkk 0= where 0k  denotes the wavenumber for 

propagation in free space. 
 
We consider waves propagating in the x-direction with fields independent of the transverse y 

coordinate. This is described by the scalar Helmholtz equation (4.13), with ( ) ),(, zxEzx y=ψ  

in the case of horizontal polarization and ( ) ),(, zxHzx y=ψ for vertical polarization. The 

paraxial wave equation is obtained by writing 
 

 ( ) ( )zxezxu ikx ,, ψ−=  (4.14) 

 
To obtain 

 ( ) 012 22
02

2

2

2

=−+
∂

∂
+

∂

∂
+

∂

∂
unk

z

u

x

u
ik

x

u
 (4.15) 

 

The standard parabolic equation is obtained by neglecting the 
2

2

x

u

∂

∂
 term. A detailed analysis 

considers a factorisation into forward and back propagating waves and a Taylor expansion of 
a pseudo-differential square root operator. The parabolic equation model which describes 
forward propagating waves at small angles from the paraxial direction is 
 

 ( ) 012 22
02

2

=−+
∂

∂
+

∂

∂
unk

x

u
ik

z

u
 (4.16) 

 
In order to introduce the effect of a curved Earth, n for a standard atmosphere is replaces in 
(4.16) by m as defined in equations (4.10) and (4.2). A widely used model for the behavior of 
the modified refractivity in the presence of an evaporation duct is described in [13]. The model 
is 
 

 ( ) 






 +
−+=

0

0
0 ln125.0125.0

z

zz
zMzM δ  (4.17) 

 

where z is the height above mean sea level (m), δ denotes the evaporation duct height (m) 
and z0 is an aerodynamic roughness parameter whose typical value is 1.5x10

-4
 m. M0 is the 

modified refractivity at the surface which has a typical value of between 300 and 350. 
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The calculation of radio wave propagation over the ocean surface has thus been reduced to 
the numerical solution of the parabolic equation 
 

 ( ) 012 22
02

2

=−+
∂

∂
+

∂

∂
umk

x

u
ik

z

u
 (4.18) 

 
together with the appropriate initial and boundary conditions. The boundary conditions at a 
perfectly conducting surface are Dirichlet (u = 0) for horizontal polarisation and Neumann 

( 0=
∂

∂

z

u
) for vertical polarisation. The numerical solution of the parabolic equation includes a 

maximum height and this needs to be dealt with to ensure that no unphysical reflections occur 
at the top of the computational domain. The initial conditions require a description of the 
source of the radio waves. 
 
The split step method propagates the solution outwards via Fourier transforms. The Fourier 
transform pair is given by 

 

( ) ( )

( ) ( )∫

∫
∞

∞−

∞

∞−

−

=

=

dpepxuzxu

dzezxupxu

pzi

pzi

π

π

2

2

,~,

,,~

 (4.19) 

 
In the case of a constant refractive index, the Fourier transform of the parabolic equation 
gives 

 ( ) ( ) ( )













−








−=

2
0

22
2

0

2
exp,0~1

2
exp,~

k

xp
ipuxmk

i
pxu

π
 (4.20) 

 
In the absence of a reflecting surface the convolution theorem can be applied to obtain 
 

 

( ) ( ) ( ) ( )
zd

x

zzik
zu

mxik
e

x

k
zxu

i

′












 ′−
′













 −
−= ∫

∞

∞−

−

2
exp,0

2

1
exp

2
,

2
0

2
040

π

π
 (4.21) 

 
 

When the refractive index varies with height a split step algorithm is employed which is 
motivated by the Fourier transform result above and justified using the formal manipulation of 
differential operators. This results in the stepping procedure 
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 (4.22) 

 
The calculation of propagation is implemented by marching out from the source to the 
maximum range of interest. The sampling required in the z-direction is related to the angle of 

propagation as θsinkp = . Substituting a plane wave of the form  

 

 
( )( )

( )( )( )zx
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+=

exp

expψ
 (4.23) 

 
into the parabolic equation gives 
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θ
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 (4.24) 
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which shows that errors occur when the angle of propagation differs from the paraxial 
direction. 
 

The vertical sampling is based on the definition of a maximum propagation angle, maxθ , in the 

region of 5 to7 degrees then 

 
maxmax sin4sin2

1

θπ

λ

θ
==∆

k
z  (4.25) 

 
The sampling in the x direction is less critical and a value of dx = 100 m has been used. 
The computational domain for a perfectly conducting boundary is shown in Figure 11 below. 
 
 

 
Figure 11: Sketch of propagation computational domain 

 
 
 
The initial field is defined in the fourier domain using the method of images to satisfy the 
boundary conditions at the (flat) surface. The expression below describes a Gaussian beam 
pattern with beam width β. The parameter s is -1 for horizontal polarisation and 1 for vertical 
polarisation. The antenna elevation angle is given by the parameter e. The initial field is 
obtained by taking the inverse Fourier transform 
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 (4.26) 

 
The modified refractive index in the region [0, zmax] is calculated using either the standard 
atmosphere model of equation Error! Reference source not found.4.2) (with a curved earth 
correction added) or the duct model of equation (4.17). This is extended into the absorbing 

layer where an imaginary component is added to 
2

m ; the imaginary component has the form  
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 (4.27) 
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where H represents a Hanning weighting that is zero when z = zmax and increases to 1 when z 

= 2zmax. The quantity 0001.0=ε . This form ensures there is no discontinuity at the boundary 

and avoids spurious reflections. The refractive index is extended to the image domain by 
reflection. 
 
The refraction and spreading exponentials in the stepping algorithm are both independent of x 
and can be pre-calculated outside the propagation loop.  
 

 
Figure 12: Propagation factor versus range and height for an antenna height of 100m, 3GHz RF 

frequency, a curved Earth and a standard atmosphere  

 

 

This calculation gives the propagation factor above the surface, and can be used in radar 
performance calculations to assess the impact of propagation on target returns. An example 
is shown in Figure 12, where a couple of terrain bumps are included to demonstrate 
interference caused by multipath. (The method of incorporating terrain in the Split Step 
method is described in [12]). Other quantities required in radar performance calculations are 
the surface propagation factor modulating clutter returns and the grazing angle of incident 
waves. The method of images approach ensures that the propagation factor at the surface is 
zero for horizontal polarisation. In order to derive a surface propagation factor the effects of 
incident and reflected waves must be separated.  
 
This is done by applying the following steps 
 

• Fourier transform the field u; 

• Set the components with positive frequencies to zero  

• Inverse Fourier transform to obtain ( )zû  

 

The surface propagation factor is the obtained from ( )0û . The grazing angle of the incident 

waves is calculated using 
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 (4.28) 

 
The grazing angle derived using equation (4.28) may be used with a model for clutter 
reflectivity to give an indication of the expected backscattered clutter level. In order to check 
that it corresponds to the real grazing angle with a flat Earth and no atmosphere, the value 
modified refractivity (m in equation (4.18)) is set to zero. The results are plotted in figures 13 
and 14. Figure 13 shows that the removal of m has, as expected, straightened out the 
interference fringes compared with the curvature evident in figure 12. Figure 14 shows that 
the derived grazing angle approximately follows the ray grazing angle out to 0.07° (80 km 
range). 
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Figure 13: Propagation factor versus range and height for an antenna height of 100m, 3GHz RF 

frequency, a flat Earth and no atmosphere 
 
 

 
 

Figure 14: Grazing angle versus range. The solid line is obtained from the data in Figure 13 using 
equation (4.28), the dotted line is a ray calulation. 

 
 
 
When the curved Earth and standard atmosphere are reintroduced the results are figure 15 
and 15. These show that the derived grazing angle from equation (4.28) follows the ray value 
down to about 0.05° and then stays at about 0.03° out to and beyond the horizon. The ray 
value goes to zero at the horizon. 
 
It is not clear why the plateau takes this value. There are non-zero EM fields in the shadow 
beyond the horizon and it is therefore possible to remove all waves in an upward direction 
and to calculate the change of phase with height, as prescribed in equation (4.28). However, 
it does not seem reasonable to interpret this result as an incoming plane wave for the 
purposes of scattering calculations. More work is required to solve the surface integral 
equations as described in section 4.2, but for the incoming fields derived from the propagation 
calculations derived here, close to, and beyond, the horizon. 
 
In the mean time, the value of the grazing angle plateau near the horizon seems to be too 
small to serve as an explanation for the higher than predicted reflectivity at low grazing angles 
in the Nathanson tables, RRE model and NRL model. 
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Figure 15: Propagation factor versus range and height for an antenna height of 100m, 3GHz RF 
frequency, a curved Earth and a standard atmosphere 

 
 

 
 

Figure 16: Grazing angle versus range. The solid line is obtained from the data in Figure 15 using 
equation (4.28), the dotted line is a ray calulation assuming a 4/3 radius curved Earth. 
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4.4  Consistency of reflectivity models with Sea clutter spikiness 
 
As discussed in section 4.1, our work on sea clutter [5] has principally been concerned with 
fluctuation statistics. We analysed a hundred or so sea clutter measurements at X band, fitted 
them to K distributions and examined the variation of the shape parameter, ν , as a function 

of grazing angle, radar resolution, sea state and polarisation.  
 
This led to an empirical model for the average dependence of ν  on radar, environmental and 

geometric parameters: 
 

  ( ) ( ) ( ) ( )
3

2cos
log

8

5
log

3

2
log 101010

sw
polc

o
gr kA

θ
φν −−+=  (4.29) 

 

where o
grφ  is the grazing angle in degrees 

 cA  is the radar resolved area (square metres) 

 kpol is a polarisation dependent parameter (1.39 for VV and 2.09 for HH), and 

 swθ  is the aspect angle with respect to the swell direction 

                 (The last term is omitted if there is no swell) 
 
From this model we see that, all other things being equal, ν  varies as grazing angle to the 

power 2/3. We can measure the effect of  ν  on the relative RCS of the largest spikes to the 

mean clutter reflectivity by examining the probability of exceeding a threshold for the K 
distribution. Figure 17 shows the thresholds (relative to the clutter mean power) that are 
required to obtain three false alarm probabilities, plotted versus the K distribution shape 
parameter ν . The plot shows that in spiky clutter (small ν ) a reduction by a factor of 10 in ν  

results in the ‘largest spikes to mean clutter level’ increasing by about 8.5 dB. Using the 
empirical model equation (4.29), figure 17 implies that in order for the spikes to remain at the 
same absolute RCS as the grazing angle changes, the reflectivity would need to reduce by 
8.5 * (2/3) = 5.7 dB  when the grazing angle is reduced by a factor of 10. 
 
It would be difficult to envisage a physical model that resulted in spike RCS increasing without 
bound as the grazing angle reduced. However, all of the potential reflectivity models 
considered here satisfy the criterion of at least a 5.7 dB reduction in reflectivity for an 
asymptotic decrease of a factor of 10 in grazing angle. Therefore they are all consistent with 
the spikiness model at that level.  
 

 
 

Figure 17: Threshold (relative to mean clutter power) required to obtain false alarm probabilities of 10
-4

 
(lower curve), 10

-6
 (middle curve) and 10

-8
 (upper curve) versus shape parameter for a K distribution.  
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5.  Measurement accuracy with multistatic radar 

 
One potential benefit of multistatic radar systems is their ability to locate and track targets 
more accurately than equivalent monostatic systems. However, quantification and analysis of 
this benefit is generally very complicated and mathematical. In order to allow straightforward 
comparisons to be made, a simple method of deriving the accuracies using Gaussian error 
modelling and techniques similar to those used in the derivation and application of Kalman 
filters is described below.  
 
The determination of the position of a target, subject to measurement noise, is equivalent to 
determining the mean of the distribution of a random process from a set of realisations of that 
process. It is practically convenient, and physically reasonable, to adopt a Gaussian model for 
the process. Measurements of the target’s position from a single sensor can therefore be 
modelled by the determination of the mean of a Gaussian process. As is well known this can 
be done quite simply by forming the arithmetic mean of a set of independent samples of the 
process. Determining a single target’s position from the outputs of two sensors with different 
error characteristics is analogous to determining the common mean of two Gaussian 
processes with the same mean, but different standard deviation. How do we adapt the simple 
procedure for determining the mean of a single process to this case? 
 
A systematic approach to this problem, which contains the determination of the mean of a 
single Gaussian as a special case and allows us to take account of the different sensor error 
statistics in the general case, can be derived from Bayes’ theorem. Merely stating this 
theorem tends to belie the power of its application, through the quantification of the inference 
process, to determining the parameters characterising the PDF which we take as the model of 
the data whose values we are measuring. In the simple case of a single Gaussian process 

these are the mean a and variance 2σ  of the data { }ix  with the assumed PDF 
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If we know the values of a and 2σ  we can characterise those of the { }ix ; if we assume that a 

measure of the credence placed in the values of a and 2σ  on the basis of the measurements 

{ }ix  satisfy the so-called Cox axioms we are able to treat these values of a and 2σ  as if they 

too are random variables which have a joint PDF, along with the data, which we write as 

{ }( )2,, σaxP i . This in turn can be written in terms of conditional and marginal probabilities  

 

 { }( ) { }( ) ( ) { }( ) { }( )iiii xPxaPaPaxPaxP |,,,|,, 2222 σσσσ ==                   (5.2) 

 
Thus we can write the conditional probability that the mean and variance take the values a 

and 2σ  , given that the data described by the Gaussian model take values { }ix , as 
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The marginal probability ( )2,σaP  incorporates our prior knowledge of the values the 

parameters might take. If, for example we know the value of the variance a priori the marginal 
probability will contain a delta function that fixes this value. In circumstances of less certainty 

( )2,σaP  term is frequently ignored and the conditional probability { }( )ixaP |, 2σ  is taken to be 

proportional to the likelihood { }( )2,| σaxP i . Thus, given the data { }ix  we can identify the 

values of the mean and variance that we are able to infer most strongly from that data as 

those that maximise the likelihood { }( )2,| σaxP i .  
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We consider the case where the measured quantities are x and y with PDFs with identical 
means and different variances 
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The PDF of a, conditional on the two data points drawn from the separate distributions takes 
the form 
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The exponent in this expression can be re-arranged as follows 
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so that 
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Thus we see that the estimate that maximises the likelihood is 
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This estimate takes account of our knowledge of how much noise is present in the 
measurements of x and y, assigning more weight to the less corrupted measurement.  
 
In this simple case we see that we can combine the estimates of a based on the separate 
values of x and y to give the best estimate from the two sets in a way that is quite sensible in 
physical terms. It is interesting to note that the arguments we use here are very similar to, 
albeit rather simpler than, those that provide the basis for sequential estimation and Kalman 
filtering techniques. 
 
We now extend this approach to the multi-variable case, where the measurements are of the 
vectors x and y, These of each has the mean a, the errors in the separate measurements are 

characterised by their associated, and different, covariance matrices yx KK , . The likelihood 

can then be constructed as 
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The exponent in this expression can be recast into the form 
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Thus we have 
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The usual likelihood maximisation argument has us identify the estimate of a as 
 

 ma =ˆ                                                                            (5.12) 

 
The extension to m sensors, each making a measurement of the same mean value a but with 

a different error covariance matrix ( ) mjj ≤≤1,K , is quite straightforward and yields 
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The mean of this estimate can be evaluated as 
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while its covariance matrix can be calculated directly as 
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 (5.15) 
 
as we would expect from our two variable special case (5.11). As the estimator is a Gaussian 
variable this mean and covariance are all we need to determine its single point statistics. 
 
Equations (5.13) and (5.15) show that estimation of the vector a (which in multi-static radar 
can be either a target’s position or its velocity vector) and the accuracy of this estimation 
depend only upon the inverse of the covariance matrices of the individual measurement 
errors. Therefore, when only a single component of a vector is measured (eg the range rate of 
a target) by a transmitter-receiver pair, the inverse of the 3D error covariance can be specified 
by setting the inverse error of the unmeasured components to zero. The inverse covariance 
matrices from all the multi-static channels can be rotated (without inverting them) to the same 
coordinate system and then summed to evaluate (5.13) and (5.15) in a straightforward 
manner.   
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